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AI for Design It is a relatively new but active area of research. 
Many applications in, e.g., industrial material, 
molecular and drug design. 

B. Sanchez-Lengeling, A. Aspuru-Guzik. Science 361.6400 (2018): 360-365.

Guo, Kai, et al. Materials Horizons 8.4 (2021): 1153-1172.

Z. Zhou et al., Scientific Reports, vol. 9, no. 1, pp. 1–10, 2019



AI for Experimental Design in NP/HEP 
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● When it comes to designing detectors and accelerators with AI this is an area at its “infancy”. What follows 
uses “detector” as example but applies to both detector and accelerator.

● Typically full detector design is studied once the subsystem prototypes are ready (phase constraints from the 
full detector or outer layers are taken into consideration).

● Need to use advanced simulations which are computationally expensive (Geant). 

● Many parameters (and multiple objective functions): curse of dimensionality [1].

● Entails establishing a procedural body of instructions [2]. 

● The choice of a suitable algorithm is a challenge itself (no free lunch theorem [3]) and always requires some 
degree of customization. 

● Non-differentiable terms. 

AI offers SOTA solutions to solve complex optimization problems in an efficient way  

[1] Bellman, Richard. Dynamic programming. Vol. 295. RAND CORP SANTA MONICA CA, 1956.
[2] CF et al. JINST 15.05 (2020): P05009. 

[3] Wolpert, D.H., Macready, W.G., 1997. Trans. Evol. Comp 1, 67–82

What follows largely based on a series of lectures on 
Detector Design with AI at the AI4NP Winter School

https://indico.jlab.org/event/409/
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Why Design with AI now? 

● We want to use these algorithms to: 
(1) steer the design and suggest 
parameters that a 
“manual”/brute-force optimization will 
likely miss to identify; (2) further 
optimize some particular detector 
technology (see d-RICH paper, e.g., 
optics properties)

● AI allows to capture hidden 
correlations among the design 
parameters.

● All “steps” (physics, detector) involved 
in the AI optimization, strong interplay 
between working groups  

Detector 
Optimization

Workflow

AI promotes Interaction among Working Groups

DWG’s:
● Technology Selection 
● Baseline Design 
● Alternate Configuration(s)

PWG’s:
● Physics Signal Selection 
● Physics Performance 

Evaluation

CWG’s:
● Simulation Campaign 

Support 
● AI Optimization 

Optimization does not mean 
necessarily “fine-tuning”
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https://iopscience.iop.org/article/10.1088/1748-0221/15/05/P05009/meta


Bayesian Optimization
● BO is a sequential strategy 

developed for global 
optimization.

● After gathering evaluations 
we builds a posterior 
distribution used to 
construct an acquisition 
function.
 

● This cheap function 
determines what is next 
query point.

1. Select a Sample by Optimizing the Acquisition Function.
2. Evaluate the Sample With the Objective Function.
3. Update the Data and, in turn, the Surrogate Function.
4. Go To 1.

t(n) t(n+1)

http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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http://krasserm.github.io/2018/03/21/bayesian-optimization/
http://krasserm.github.io/2018/03/19/gaussian-processes/
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Dual RICH: case study

● 6 Identical open sectors (petals)
● Optical sensor elements: 

8500 cm2/sector, 3 mm pixel
● Large focusing mirror 

● Continuous momentum coverage. 
● Simple geometry and optics, cost effective.
● Legacy design from INFN, see EICUG2017 

aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008)

E. Cisbani, A. Del Dotto, CF*, M. Williams et al. 
"AI-optimized detector design for the future Electron-Ion Collider: the dual-radiator RICH case." 

Journal of Instrumentation 15.05 (2020): P05009.

https://agenda.infn.it/event/13037/contributions/17199/attachments/12476/14030/deldotto_EICUG2017.pdf
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Construction Constraints   

3σ

(2σ bands)

Ranges depend mainly on mechanical constraints and optics requirements.
These requirements can change in the next future based on inputs from prototyping.
 

The idea is that we have a bunch of parameters to optimize that characterize the detector design. 
We know from previous studies their ranges and the construction tolerances. 
 Variations below these 

values are irrelevant
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The Model and
the Optimized FoM

Model built from observations
black points: observations

           optimal design



EARLY STOPPING

AI-Optimized dRICH

curves shown as 68% CL bands 

E. Cisbani, A. Del Dotto, CF*, M. Williams et al.  
JINST 15.05 (2020): P05009.

● Statistically significant Improvement in both parts.
● In particular in the gas region where the 5σ threshold shifted 

from 43 to 50 GeV/c and the 3σ one extended up to 
● Notice that before this study we did not know “how well” the 

legacy design was performing.
aerogel (4 cm, n(400 nm): 1.02) 
+ 3 mm acrylic filter 
+ gas (1.6 m, n(C2F6): 1.0008) 12
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EARLY STOPPING

Convergence Criteria
● Can in general be applied in the design space, in 

the objective space, or looking at the behavior of 
the acquisition function.  

● We defined a set of conditions to ensure 
convergence: 

○ These correspond to the logic AND of 
booleans on each feature and on the variation 
of the figure of merit. 

○ They are built on standardized Z and Fisher 
statistics. 

● Pre-processing of data required to remove outliers. 
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EARLY STOPPING

Comparison with Random Search

● BO with GP scales cubically with number of observations. 

● Bayesian optimization methods are more promising because they offer principled approaches to weighting the 
importance of each dimension. 

● For this 8D problem - even with 50 cores, RS looks unfeasible due to the curse of dimensionality. 

○ Recall that the probability of finding the target with RS is 1-(1-v/V)T, where T is trials, v/V is the volume of 
target relative to the unit hypercube 
        Bergstra, Bengio, “Random search for hyper-parameter optimization”, J. Mach. Learn. Res.13 (Feb) (2012) 281–305.

Each call:
400 tracks generated/core  
20 cores  

1 design point ~ 10 mins/CPU

Budget: 100 calls



Multiple Objectives!

● The problem becomes challenging when the objectives are of conflict to 
each other, that is, the optimal solution of an objective function is 
different from that of the other. 

● In solving such problems, with or without constraints, they give rise to a 
trade-off optimal solutions, popularly known as Pareto-optimal solutions.  V. Pareto, 

1848-1923

● Due to the multiplicity in solutions, these problems were 
proposed to be solved suitably using evolutionary 
algorithms which use a population approach in its 
search procedure.

ÿ2

ÿ1
Point C is not on the Pareto 

frontier because it is dominated 
by both point A and point B. 

MO-based solutions are helping to reveal important hidden 
knowledge about a problem – a matter which is difficult to 

achieve otherwise [1]. 

[1] Deb, Kalyanmoy. "Multi-objective optimisation using evolutionary 
algorithms: an introduction." Multi-objective evolutionary 
optimisation for product design and manufacturing. Springer, 
London, 2011. 3-34.
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https://en.wikipedia.org/wiki/Vilfredo_Pareto


Frameworks 
● Notice that MOO with dynamic/evolutionary 

algorithms (see, e.g., [1-3]) are probably the most 
utilized approaches, followed by more recent 
developments on multi-objective bayesian 
optimization (see, e.g., [4-7]). Using them has the 
advantage of having an entire community 
developing those tools. 

● Agent-based approaches to MOO are also possible 
(see, e.g., [8]), but won’t be discussed here. 

● Remarkably these approaches can accommodate 
mechanical and geometrical constraints during the 
optimization process.

https://github.com/topics/multi-objective-optimization

[1] J. J. Durillo and A. J. Nebro, “jMetal: A Java framework for multi-objective optimization,” 
Advances in Engineering Software, vol. 42, no. 10, pp. 760–771, 2011.

[2] F.-A. Fortin, F.-M. De Rainville, M.-A. G. Gardner, M. Parizeau, and C. Gagné, “DEAP: 
Evolutionary algorithms made easy,” The Journal of Machine Learning Research, vol. 13, no. 
1, pp. 2171–2175, 2012. 

[3] J. Blank and K. Deb, “pymoo: Multi-objective Optimization in Python,” IEEE Access, vol. 8, 
pp. 89497–89509, 2020

[4] M. Laumanns and J. Ocenasek, “Bayesian optimization algorithms for multi-objective 
optimization,” in International Conference on Parallel Problem Solving from Nature, pp. 
298–307, Springer, 2002.

[5] M.  Balandat,  B.  Karrer,  D.  R.  Jiang,  S.  Daulton,  B.  Letham,  A.  G.  Wilson,  and E. 
Bakshy, “Botorch: Programmable bayesian optimization in pytorch,” arXiv preprint 
arXiv:1910.06403, 2019.

[6] P. P. Galuzio, E. H. de Vasconcelos Segundo, L. dos Santos Coelho, and V. C. Mariani, 
“MOBOpt—multi-objective Bayesian optimization,” SoftwareX, vol. 12, p. 100520, 2020.

[7] A. Mathern, O. S. Steinholtz, A. Sjöberg, M. Önnheim, K. Ek, R. Rempling, E. Gustavsson, 
and M. Jirstrand, “Multi-objective constrained Bayesian optimization for structural design,” 
Structural and Multidisciplinary Optimization, pp. 1–13, 2020.

[8] R. Yang, X. Sun, and K. Narasimhan, “A generalized algorithm for multi-objective 
reinforcement learning and policy adaptation,” in Advances in Neural Information Processing 
Systems, pp. 14636–14647, 2019
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Elitist Non-Dominated 
Sorting Genetic 

Population
@(t)

Offspring
Population

@(t+1)

Front

Offspring

Population

[1] Deb, K., et al. "A fast and elitist multiobjective 
genetic algorithm" IEEE transactions on 
evolutionary computation 6.2 (2002): 182-197. 

This is one of the most popular approach 
(>35k citations on google scholar), characterized by:

● Use of an elitist principle
● Explicit diversity preserving mechanism
● Emphasis in non-dominated solutions

The population Rt is classified in non-dominated fronts. 
Not all fronts can be accommodated in the N slots of available in the new 
population Pt+1. We use crowding distance to keep those points in the last 

front that contribute to the highest diversity. 

The crowding distance di of point 
i is a measure of the objective 

space around i which is not 
occupied by any other solution in 

the population. 

i

f1

f2

i+1

i-1

crossover

mutation
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Novel Aerogel Material aefib
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resolution

stability

Simple Ring Imaging CHerenkov Geant4 based simulation
Aerogel + Optical Fibers 

Gmsh - define geometry and produce mesh 
ElmerGrid - convert the gmsh mesh to elmer compatible mesh 

ElmerSolver - do modeling (solve linear and nonlinear equation) 
Paraview - visualize Elmer Solver and provide a python interface to automate 

S
of

tw
ar

e 
S

ta
ck

● Aerogels with low refractive indices are very fragile tiles break during 
production and handling, and their installation in detectors.

● To improve the mechanical strength of aerogels, Scintilex developed a 
reinforcement strategy.  The general concept consists of introducing fibers 
into the aerogel that increase mechanical strength, but do not affect the 
optical properties of the aerogel.

● Paper in preparation.

The team: V. Berdnikov, J. Crafts, E. Cisbani, CF, T. Horn, R. Trotta

Aerogel tile with 
random fiber orientation



uRWELL FSTITS3

EGEM uRWELL

dRICH

FTTL (2 layers)

DIRC

ETTL (2 layers)

FGEM

mRICH

CTTL
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The ECCE Inner Tracker 
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Ratios are with respect to a reference design
Each proposed design is consistent with an Aluminum support shell 

from the reference design 

● Design include simultaneously:

○ momentum resolution 
○ angular resolution
○ Kalman filter efficiency  
○ Mechanical constraints

Karthik Suresh (Regina) & CF 

The ECCE Inner Tracker 

This is (already) an unprecedented attempt in 
detector design for complexity! 

ECCE Inner Tracker: barrel + endcaps

● Pareto front: multiple candidate solutions

KF

P
θ ● >= 11 parameters 

● 3 (4) objectives 
● Population size 100 
● Offspring distributed over >=30 

cores
● 80000 tracks / design point 
● ~1h  / design point

1

0.04

Can take a 
snapshot any time 
during evaluation



The decision making process done after optimization.
For each design solution in the Pareto Front one can study the corresponding detector performance. 21

The ECCE Inner Tracker 

~20 % improvement

~20 % improvement

KF Ineff

θ Reso

P Reso

Optimal/baseline -1
Baseline Ineff

See talk by W. Phelps for more details



Multiple Pipelines: Example
1

2

3

4

DWG’s:
● Technology Selection 
● Baseline Design 
● Alternate 

Configuration(s)

PWG’s:
● Physics Signal 

Selection 
● Physics 

Performance 
Evaluation

CWG’s:
● Simulation 

Campaign Support 
● AI Optimization 

Inner Tracker Barrel (+ disks in the h-endcap and e-endcap)

● Configuration 1: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (ITS2) 

● Configuration 2: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (ITS2)

● Configuration 3: 2-vtx (ITS3) + 2-sagitta (ITS2) + 2-outer layer (uRwell)

● Configuration 4: 2-vtx (ITS3) + 2-sagitta (ITS3) + 2-outer layer (uRwell)

updated configurations with any 
additional requirements

New optimization pipelines
22
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Resources 

● running on scicomp @ JLab  

The “Farm” status on an unusually quiet day (scicomp.jlab.org)

The scientific computing cluster has: 
● 25k cores EIC Projects are allocated 10% 
● 1PB for EIC use
● Batch use as well as interactive use supported with

○ Nodes with up to two 32 core AMD Epyc 
Processors (128 threads), 256GB Ram, 1TB SSD 
local storage

○ 3 Nodes with 4 Titan RTX Cards (24 GB 
Memory)

○ GPU nodes also available through 
jupyterhub.jlab.org

● Characterization of simulation times 

Simulating 80000 in total 
for each evaluation, 1 
evaluation is <=80 mins

OUR PROBLEM: Inner Tracker
>= 11 parameters 
3 objectives 
Population size 100 
Offspring distributed over >=30 cores

● Characterization of time taken by GA + sorting

~MN2

● Used a test problem 
DTLZ1

● Verified scaling 
following MN2 and 
convergence to true 
front

● ~1s/call with 104 size!

● For 11 variables and 3 
objectives needs ~ 
10000 evaluations to 
converge 

~10k CPUhours
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MOEA Parallelization 
● Well known that NSGA-II increase in computational complexity as O(MN2) [1].

● A recent trend in MOEA is distributed NSGA-II and implementation on supercomputers. This is useful when large 
populations are needed (e.g., 105), due to complexity and/or to approximate the Pareto front with high accuracy.

● A custom optimized parallel NSGA-II called swNSGA-II has been designed for Sunway TaihuLight [2] 
supercomputer. 

● swNSGA-II utilize process and thread 
level parallelism based on an improved 
island master-puppet model.  

● Performance have been benchmarked 
against conventional NSGA-II with a 
speedup of ~5⋅104 for standard 
optimization problems. 

● Comparisons with GPU (GeForce GT 630) 
-based NSGA-II done using 1 core group 
only (64 CPE), obtaining a speedup of 
~10 with large populations.

[1] M.T. Jensen, IEEE Trans. Evol. Comput., 2003 

[2] Liu, Xin, et al. IEEE Trans Parallel Distrib Syst 32.4 (2020): 975-987.

160

40960 SW26010

4 core groups 
each: 
1 MPE, 64 CPE
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Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Injection of 
Physics 
Events 

AI
Model based on 

observations, 
decision making

Design parameters

✔ ✔

objectives

Design Workflow

✔ ✔

Developed to cope with complex problems 
which are computationally expensive in 
order to reduce the number of evaluations 
needed for the optimization
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Detector 
Simulation 

Analysis of 
High-level 

reconstruction of 
events

Injection of 
Physics 
Events 

AI
Model based on 

observations, 
decision making

Design parameters objectives

✔

X Y

With large datasets...

✔
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MODE 
● Detectors design with AI is gaining a lot of interest. 

● MODE is a recently formed collaboration of physicists and computer scientists who target the use of differentiable programming in 
design optimization of detectors for particle physics applications A. G. Baydin et al. Nuclear Physics News 31.1 (Mar 30, 2021): 25-28.

● Ambitious project: develop a modular, customizable, and scalable, fully differentiable pipeline for the end-to-end optimization of 
articulated objective functions that model in full the true goals of experimental particle physics endeavours, to ensure optimal detector 
performance, analysis potential, and cost-effectiveness.

Conceptual layout of an optimization pipeline 
for a muon radiography apparatus. 

An end to end optimization requires modeling 
of simulations. Requires collect reference data 
to train the surrogate models ML 
implementations. 
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Summary
● EIC can be one of the first experiment to be designed with the support of AI. 

● ECCE is leading these efforts with an unprecedented attempt in detector design (multidimensional design 
and objective spaces). 

● None ever accomplished a multi-dimensional / multi-objective optimization of the global design, i.e., made 
by many sub-detectors combined together, that can be solved with AI 

○ Costs can be explicitly included during the optimization provided a reliable parametrization)  

○ An intrinsic overhead regards compute expensive simulations (+ reconstruction/analysis). How to speed up 
bottlenecks and overall these steps? See discussion in the Sessions on: Simulations,  Reco & Analysis.   

○ Larger populations of design points can be simulated to improve accuracy of the Pareto front in 
multidimensional spaces with AI-based accelerated optimizations.   

Likely future detectors will be designed with the help of AI achieving optimal 
performance and cost reduction. 
One of the conclusions from the DOE Town Halls on AI for Science on 2019 was that “AI 
techniques that can optimize the design of complex, large-scale experiments have the 
potential to revolutionize the way experimental nuclear physics is currently done”.


